
THINKING WITH OBJECTS – Lecture #1. Introduction and classes Page 1 of 6

Questions and Exercises

These questions and exercises is an opportunity to see what you've learnt from the lecture as well as

practice the new things we've been talking about. In other words, these questions and exercises are

completely optional but it's recomended to do them. In the end of the document you will find the

answers to the questions as well as possible solutions to the exercises, note that one can solve an

exercise in different ways. There will also be some suggestions about what one could code if one

want to continue with some more advanced things. These suggestions will not come with a possible

solution and might include things that haven't been covered in the lecture.

Question 1

What is a constructor? And what is the syntax difference between a constructor and a method?

Question 2

Fields are a type of variables. What's so special about them?

Question 3

The static keyword can be used in front of methods and fields. What is it used for?

Exercise 1

Write a person class. A person should have a name, an occupation and an age. Write a simple

program which uses this class to group a bunch of persons by their occupation. Inside each group

the persons should be sorted by their age. For example, given the following persons

Dan, Janitor age 32

Paul, Postman age 25

Caroline, Postman age 23

Bill, Janitor age 38

the code should output it as

Janitor

Bill, age 38

Dan, age 32

Postman

Paul, age 25

Caroline, age 23

Exercise 2

Write an occupation class. An occupation should have a company, a position in the company, a

salary and the amount of hours of work per month. Also write a method for the hourly salaries of

By Vidar Swenning

THINKING WITH OBJECTS – Lecture #1. Introduction and classes Page 2 of 6

the occupation.

Write a program that prints out the average hourly salaries for each comapny. You can assume that

the list is already grouped by company. For example, given the following occupations

Steve's Carts, Manager, 200000, 1

Steve's Carts, Mechanic, 1200, 300

Steve's Arcades, Manager, 25000, 40

Steve's Arcades, Janitor, 1000, 160

the code should print out the following

Average of hourly salaries at Steve's Carts is 100002

Average of hourly salaries at Steve's Arcades is 315

Further explorations

Use the Chair class from the lecture, the Person class from exercise 1 and the Occupation class from

exercise 2. Change it so the Chair class is refering to the Person class and so the Person class is

reffering to the Occupation class.

Write a program that allows persons to sit down around a table for a board meeting. When the

meeting is about to start make sure that no body from another company is present. Also make sure

that there's no body there who's not a board member and finally make sure that there's no kid

around.

Expand the program by creating a Meeting class. This class should include a list of all the chairs as

well as the restrictions of the meeting, for instance age limits, company restrictions and company

position restrictions. Use this meeting class to allow the program to handle different kinds of

meetings and to be able to handle multiple meetings at the same time. Make sure that the same

person is not attending multiple meetings at one given time.

Answers and solutions

Answer to Question 1

A constructor is a special type of method. It is called when a new object is being created. This

means that the parameter lists of the constructors defines how you can create the object. The

difference, syntax-wise, to a method is that the constructor has no return type and must be named

the same as the class.

Answer to Question 2

Fields are variables directly in the class, rather than in a method. The only special thing about them

is where they are declared. This makes them accessible from within all the methods of the class.

By Vidar Swenning

THINKING WITH OBJECTS – Lecture #1. Introduction and classes Page 3 of 6

Answer to Question 3

The static keyword makes a method or a field indepentent of objects. This means that you can call it

directly from the class, opposed to have to define which object to refer to when running the method

or accessing the field. The static keyword is left out more often than it's used.

Possible solution to Exercise 1

//the class

public class Person {

 //fields

 String myName;

 String currentOccupation;

 int currentAge;

 //constructor

 Person(String name, String occupation, int age) {

 myName = name;

 currentOccupation = occupation;

 currentAge = age;

 }

 //methods

 String getName() {

 return myName;

 }

 String getOccupation() {

 return currentOccupation;

 }

 int getAge() {

 return currentAge;

 }

}

//the program using the class

public class PersonExample {

 public static void main(String[] args) {

 Person[] persons = {

 new Person("Dan", "Janitor", 32),

 new Person("Paul", "Postman", 25),

 new Person("Caroline", "Postman", 23),

 new Person("Bill", "Janitor", 38)

 };

 //sort the list

By Vidar Swenning

THINKING WITH OBJECTS – Lecture #1. Introduction and classes Page 4 of 6

 sort(persons);

 //print it out

 print(persons);

 }

 static void sort(Person[] persons) {

 for (int i = 0; i < persons.length; i++) {

 for (int j = persons.length - 1; j > i; j--) {

 Person person1 = persons[j];

 Person person2 = persons[j - 1];

 //alphabetically compare the occupations

 int comparison = person1.getOccupation().compareTo(person2.getOccupation());

 if (comparison < 0 || (comparison == 0 && person1.getAge() > person2.getAge())) {

 //if the values are in the wrong order, swap them

 Person temp = persons[j];

 persons[j] = persons[j - 1];

 persons[j - 1] = temp;

 }

 }

 }

 }

 //print out a sorted list of persons, grouped by their occupation

 static void print(Person[] persons) {

 String lastOccupation = "";

 for (int i = 0; i < persons.length; i++) {

 if (lastOccupation.equals("") || !lastOccupation.equals(persons[i].getOccupation())) {

 System.out.println("\n" + persons[i].getOccupation());

 }

 System.out.println(persons[i].getName() + ", age " + persons[i].getAge());

 lastOccupation = persons[i].getOccupation();

 }

 }

}

Possible solution to Exercise2

//the class

public class Occupation {

 //fields

 String myCompany;

 String myPosition;

By Vidar Swenning

THINKING WITH OBJECTS – Lecture #1. Introduction and classes Page 5 of 6

 int currentSalary;

 int hoursPerMonth;

 //constructor

 Occupation(String company, String position, int salary, int hours) {

 myCompany = company;

 myPosition = position;

 currentSalary = salary;

 hoursPerMonth = hours;

 }

 //methods

 String getCompany() {

 return myCompany;

 }

 String getPosition() {

 return myPosition;

 }

 int getSalary() {

 return currentSalary;

 }

 int getHours() {

 return hoursPerMonth;

 }

 int getHourlySalary() {

 return getSalary() / getHours();

 }

}

//the program using the class

public class OccupationExample {

 public static void main(String[] args) {

 Occupation[] occupations = {

 new Occupation("Steve's Carts", "Manager", 200000, 1),

 new Occupation("Steve's Carts", "Mechanic", 1200, 300),

 new Occupation("Steve's Arcades", "Manager", 25000, 40),

 new Occupation("Steve's Arcades", "Janitor", 1000, 160)

 };

 int totalHourlySalary = 0;

 int occupationCount = 0;

 for (int i = 0; i < occupations.length; i++) {

 totalHourlySalary += occupations[i].getHourlySalary();

 occupationCount++;

By Vidar Swenning

THINKING WITH OBJECTS – Lecture #1. Introduction and classes Page 6 of 6

 if (i == occupations.length - 1 || !occupations[i].getCompany().equals(occupations[i +

1].getCompany())) {

 System.out.println("Average of hourly salaries at " + occupations[i].getCompany() + " is

" + (totalHourlySalary / occupationCount));

 totalHourlySalary = 0;

 occupationCount = 0;

 }

 }

 }

}

By Vidar Swenning

